Skip to main content

MELODYFLOW Unleashed: Effortless Music Editing and Generation through Text-Guided AI

MELODYFLOW Unleashed: Effortless Music Editing and Generation through Text-Guided AI

Introduction

MELODYFLOW is introduced as a high-fidelity, text-controllable model for generating and editing music. Built on continuous latent representations with a 48 kHz stereo variational autoencoder (VAE) codec, MELODYFLOW uses a single-stage Flow Matching (FM) approach, achieving state-of-the-art audio fidelity and text adherence in music editing tasks.

Method

Latent Audio Representation

MELODYFLOW’s audio codec builds on EnCodec with enhancements from Descript Audio Codec, including convolutional autoencoder and multi-scale STFT reconstruction for high-quality stereo encoding.

Conditional Flow Matching Model

This section describes the FM approach where MELODYFLOW learns optimal transport paths from data to noise using a Diffusion Transformer model conditioned on text descriptions, facilitating high-quality text-to-music generation.

Text-Guided Editing through Latent Inversion

MELODYFLOW supports zero-shot, text-guided music editing via inversion of latent audio representations. Using a text-based prompt, the model modifies audio while maintaining consistency with the source material.

Regularized Latent Inversion

MELODYFLOW enhances inversion by using a regularized FM approach, stabilizing the editing path and improving text-adherence through KL regularization.

Improving Flow Matching for Text-to-Music Generation

Improvements to FM include a KL-regularized codec for better quality and faster inference and minibatch coupling to enhance the model’s generative accuracy and efficiency.

Experimental Setup

Model

MELODYFLOW includes a Diffusion Transformer of 400M or 1B parameters, conditioned on text embeddings from T5, and trained on music datasets with stereo and mono options for diverse applications.

Generation and Editing

Text-to-music generation uses an ODE solver, and editing involves ReNoise inversion for

Popular posts from this blog

Installer Stable Diffusion 2.1 sur votre machine locale : un guide étape par étape

Cherchez-vous à explorer les capacités de Stable Diffusion 2.1 sur votre ordinateur local ? L'exécution du logiciel localement peut vous offrir une plus grande flexibilité et un meilleur contrôle sur vos expériences, mais il peut être intimidant de le configurer pour la première fois. Dans ce guide étape par étape, nous vous guiderons tout au long du processus d'installation et d'exécution de Stable Diffusion 2.1 sur votre bureau. Vous serez opérationnel en un rien de temps, prêt à libérer la puissance de ce puissant logiciel de simulation. Alors, commençons! Avant de commencer, il est important de noter que Stable Diffusion 2.1 a des exigences matérielles et logicielles minimales. Assurez-vous que votre PC répond aux exigences suivantes avant de continuer : Système d'exploitation : Windows 7, 8 ou 10 ou Linux Processeur : Processeur double cœur ou supérieur RAM : 8 Go Go ou plus Carte graphique : NVIDIA ou AMD avec 8 Go de VRAM ou plus Étape 1 : Télécharger le fich...

Prompts to generate icons with midjourney

In today's digital age, icons have become an essential part of our visual language. Whether it's navigating a website, using a mobile app, or browsing social media, icons are used to convey meaning quickly and efficiently. With the rise of artificial intelligence (AI), creating custom icons has become easier than ever before. AI can generate icons on different styles, ranging from flat and minimalistic to detailed and realistic. In this article, we will explore how to generate icons using AI and provide prompts for generating icons on different styles. Flat icons with a colorful, geometric design These icons are designed to be simple and visually appealing, using bold colors and geometric shapes to create a clean, modern look. Line icons with a minimalistic, modern look These icons use simple lines and shapes to create a minimalistic, modern design that is easy to read and visually striking. Glyph icons with a classic, timeless design These icons are designed to be ...

Understanding OMNIPARSER: Revolutionizing GUI Interaction with Vision-Based Agents

Understanding OMNIPARSER: Revolutionizing GUI Interaction with Vision-Based Agents Introduction What is OMNIPARSER? Why OMNIPARSER is Innovative Methodology Interactable Region Detection Incorporating Local Semantics Training and Datasets Performance on Benchmarks ScreenSpot Benchmark Mind2Web Benchmark AITW Benchmark Real-World Applications and Future Potential Conclusion Introduction As artificial intelligence advances, multimodal models like GPT-4V have opened doors to creating agents capable of interacting with graphical user interfaces (GUIs) in innovative ways. However, one significant barrier to the widespread adoption of these agents i...